

LAr FCAL Upgrade Plans

F. Lanni Brookhaven National Laboratory

Outline

- •The Atlas Calorimeter System
- General Atlas LAr Upgrade organization and plans (phase-I and II)
 - Readout Electronics
 - Cryogenic Front-End for the HadronicEndcap calorimeter
 - Engineering Studies
- FCAL issues @ sLHC upgrade
- Options for a new FCAL
- Toward an FCAL Upgrade Construction Project

LAr Upgrade Organization and Plans

Atlas Upgrade Steering Group (N. Hessey)

Atlas Upgrade Project Office (D. Lissauer)

LAr Mgmt/PL (I. Wingerter-Seez)

LAr Upgrade R&D (F. Lanni, C. Zeitnitz)

Readout Electronics Upgrade Plans

10 years @ 10³⁴

Radiation	Simulated		Safety Factors	Total	3 -years @			
Туре	Level	Simulation	Low Dose Rate	Lot Variations	Radiation Tolerance Criterion	sLHC		
Total Ionizing Dose	5 kRad	3.5	5	2	175 kRad	525 kRad		
Neutron Fluence	1.6 x 10 ¹² n/ cm ²	5	1	2	$1.6 \times 10^{13} \text{ n/}$ cm^2	4.8 x 10 ¹³ n/ cm ²		
Single Event Upsets	7.7 x 10 ¹¹ h/ cm ²	5	1	2	$7.7 \times 10^{12} h/$ cm^2	2.3 x 10 ¹³ h/ cm ²		

Phase-II upgrade needed because of radiation level issues of board components

- 1) Components can not replaced as the technology will not be available.
- 2) Limited numbers of spares available.
- 3) Qualification for radiation tolerance is 10yrs at nominal luminosity.
- 4) Therefore replacement is required for sLHC...
- 5) May be replacement will be needed is failure rate is higher than expected?
- 6) Phase-II ...

Readout Electronics Upgrade

Current Implementation:

- •3 Gain Settings (x1,x10,x100)
- •Analog Pipeline (2.5μs)
- L1 receiver (100kHz max. trigger rate)
- Gain Selector mechanism and digitization upon receipt of the L1 signal

Baseline for sLHC:

- •2 Gain Settings?
- Pipeline off-detector. 40MSPS digitization
 - Data throughput: 100 Gbps/board
 - Radiation hardened FPGA and data lossless compression (100->30Gbps)?
- Analog T&H?
- How much integration on a single ASIC ?

Cryogenic Front-End for the Hadronic Endcap Calorimeter

- GaAs preamplifiers installed on detector
- Qualified for 10yrs operation at nominal luminosity
- R&D studies by MPI and German Universities to evaluate radiation tolerance above 10^34 ...
- ...as well as alternative technologies (cryogenic SiGe processes)

Also (TRIUMF)
 tooldesign to access the
 calorimeter wheels for
 replacing the PC boards
 that house preamplifiers

The FCAL Project

- The original construction project was a collaborative effort between 4 funding agencies.
- U.S Contribution: ~3.3M USD

US Contributions (U. of Arizona resp.):

- Development and design (...novel readout geometry developed for the SSC GEM detector and adopted by Atlas in 1993)
- Deliverables:
 - FCAL1 (e.m. modules)
 - HV distribution and summing boards
 - Cold cables
 - Share of responsibility of final assembly and installation @ CERN
 - Stewardship responsibility for optimal integration of the FCAL assembly into ATLAS, including calibration and software development
- J. Rutherfoord, U. of Arizona, was the LAr-FCAL project leader within the Atlas LAr collaboration during the whole construction phase.

FCAL performance degradation

- Detector performance will deteriorate at luminosities above the nominal 10³⁴.
- The main issues are:
 - Space charge effects arising from slowly drifting positive ion build-up
 - Heating by dE/dx of the FCAL modules with possible consequent boiling of Argon
 - Significant drop in the HV distribution that generates the drifting electric field in the detector elements.
- In at least the latter case there is no enough margin at $3x10^{34}$ so the FCAL performance may degrade significantly.
- Calculations are based on MonteCarlo simulation of minimum bias events. There are uncertainties associated to the different generators
 - Data availability by end 2008/mid 2009 will allow more accurate estimates
- A complete assessment of the performance degradation has just begun and it is being pursued vigorously

Performance degradation example

Gradual degradation as luminosity increase above the nominal value However at $3x10^{34}$ the HV drops already down by x2.5

Color coded maps:

GREEN: normally operating

YELLOW: Stability limit region.

RED: unstable. No signal and energy reconstruction

Physics Impact of a non functioning FCAL

FCAL1 Upgrade Options

LAr Gap

(µm)

250

375

Electrodes

12260

10200

8224

- Two alternatives:
- 1. Design a newly re-optimized FCAL1

Peek Fiber Copper Tube Copper Rod

- Optimize tube geometry to eliminate space charge effects (smaller gaps)
- Engineer an inner cooling loop to intercept the heat and avoid risk of boiling
- Redesign HV bias distribution network and protection resistor.

FCal1

FCal2

FCal3

EM

HAD

HAD

copper

tungsten

tungsten

Cold

FCAL1 Upgrade Options

Two alternatives:

1. Design a newly re-optimized FCAL1

2. Install a warm mini-FCAL in front of FCAL1 so that the latter becomes a tail catcher for EM showers

FCAL Engineering Studies Needed!

- Activation
- Limited Time
- Limited Access
- Tooling
- Conflicts with upgrade of other subsystems (ID and muon)

FCAL Engineering Studies Needed!

Atlas - LAr Strategy

- The FCAL will not operate @ sLHC (Phase-II).
- The only possible upgrade is by the long shutdown (2016/2017)
- Need more studies to address criticality of the FCAL issues for Phase-I
 - Calculations are based on MC with significant variation between min. bias generators
 - Need to collect data (end of 2008/mid-late 2009)
- Scope of the project extends for several years
 - "Lessons" from the original construction project (design through installation onto the end-cap cryostat)
- Need to develop both options in parallel... STARTING NOW...
 - Detector R&D for the "warm"-option
 - Design and detailed engineering studies for a cold FCAL1 replacement as integral part of a construction project and of the decision making process
- Tradeoff between technology challenges vs. ease of installation/ integration inside the Atlas detector
- Decision and ready to start production in 2011

Summary: FCAL Upgrade Goals and US Deliverables

- Maintain leadership role in Atlas for the Forward Calorimetry
 Developing tools and all preparatory engineering studies to be ready to
 launch replacement
 - Defining detailed design of an upgraded "cold" FCAL1 detector
 - Request of a Phase-I construction project for a cold FCAL1 upgrade:
 - Engineering resources and manpower for design of a newly optimized FCAL1 module, new services (cooling) and a new HV distribution scheme
- In case a "cold" FCAL upgrade will be decided (end 2011):
 - Assume direct responsibility in construction/assembly of the FCAL1
 - Share responsibility during assembly and installation phases at CERN
 - Total: 51.1 FTE-yrs (2010-2018), 8.1M
 - See Howard's summary for detailed resource/manpower needs
- If the FCAL will be "warm" the US responsibilities and contributions have to be understood and clarified

FCAL Upgrade Construction Project

						. 106	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	20
1		Name	Duration	Start	Finish		H1 H2	H1 H2	H1 H2										
2		⊟FCAL R&D Simulations, Testbe	3,044 day	10/2/06	5/31/18	₹												—	
3	Ö	R&D Studies	588 days	10/2/06	12/31/08	***													
4	Ö	Protvino Testbeam	717 days	10/2/06	6/30/09														
5	ö	R&D Completion	0 days	6/30/09	6/30/09				ľ										
6	Ö	Simulations	262 days?	10/1/08	10/1/09														
											1.8	FTEy							
8		☐FCAL1 Construction Project	2,261 day	10/1/09	5/31/18				•			· · = y						—	
9	ö	Preliminary Design	261 days?	10/1/09	9/30/10						,								
10		Proto/Pre-Prod.	174 days?	10/1/10	6/1/11 5														
11		Beam tests on pre-prod mode	347 days?	6/2/11	9/28/12					1									
12	ö	Final Design	152 days?	6/2/11	12/30/11				6 ==	_ <		t.							
13		Part Procurement	261 days?	1/2/12	12/31/12				6 FT	Ŀу		Y	h			16 F	ΓFV		
14		Module Production	587 days?	1/1/13	4/1/15 5							7			i L	101	<u> </u>		
15		Assembly	522 days?	4/2/15	3/31/17								\ /						
16	Ö	Installation	304 days?	4/3/17	5/31/18								V						
												20).7 FT	Ey					
						r											1 ETI	=\/	
						¢							.,	- у			1	FTE	FTEy

Schedule and Resources

Backup Slides

- Electrodes ganged together at module face:
 - 4,6 and 9 for FCAL1,2,3
- For most channels, 4

 (adjacent) groups are
 summed on special SB PCBs
 in LAr
 - Provides adequate granularity
 - Reduced number of readout channels and FT penetrations
- Matching transformer and transmission line coupling to the "regular" Front-End Boards (preamp/shaper/ SCA)

Super T6 for HEC wheels extraction → bv Rov Lanastaff

